
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELF-ALIGNMENT FOR OFFLINE SAFE REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deploying an offline reinforcement learning (RL) agent into a downstream task is
challenging and faces unpredictable transitions due to the distribution shift between
a offline RL dataset and a real environment. To solve the distribution shift problem,
some prior works aiming to learn a well-performing and safer agent have employed
conservative or safe RL methods in the offline setting. However, the above methods
require a process of retraining from scratch or fine-tuning to satisfy the desired
criteria for performance and safety. In this work, we present a simple model-
based RL method with a transformer and a world model, and propose a Lyapunov
conditioned self-alignment method, which does not require retraining and conducts
the test-time adaptation for the desired criteria. We show that our model-based RL
with the transformer architecture can be described as a model-based hierarchical
RL. As a result, we can combine hierarchical RL and in-context learning for self-
alignment in transformers. The proposed self-alignment framework aims to make
the agent safe by self-instructing with the Lyapunov condition. In experiments, we
demonstrate that our self-alignment algorithm outperforms safe RL methods in
continuous control and safe RL benchmark environments in terms of return, costs,
and failure rate.

1 INTRODUCTION

Ensuring safety in real-world online reinforcement learning (RL) is crucial to making recent advances
in deep RL algorithms (Haarnoja et al., 2018; Janner et al., 2019; Lee et al., 2023; Eysenbach
et al., 2022) more practical, especially when a downstream controller (RL agent) suffers from
underactuated robotics (Tedrake, 2009) or is deployed in the wild. Offline RL (Kumar et al., 2020)
studies have shown that RL agents can be pretrained with well-curated offline RL datasets with human
supervision, such as D4RL (Fu et al., 2021b), RL-unplugged (Gulcehre et al., 2020), and DSRL (Liu
et al., 2023a) to learn better-performing and safer policy by utilizing the existing data. However,
deploying a pretrained offline RL model naively without considering the many facets of unknown
test-time environment is not sufficient to guarantee the safety of downstream controller. Recent two
results (Ghosh et al., 2022b; 2021) have provided some insight into the challenge that a downstream
controller suffer from by highly uncertain and partially observable test time environment. These
studies point out that, even for the same observation, the transition probability can be unpredictable
due to the uncertain nature of the system’s dynamics at each step. Hence, specifying and adapting
the environment transition during test-time for an RL agent is necessary to avoid risky consequence.
(Ghosh et al., 2022b) learned explicit belief as an augmented input for policy to adapt the test-time
environment can help an downstream controller to be safer.

Belief based adaptation, however, requires its own pretraining algorithm from scratch for test-time
adaptation. It is hard to align the pretrained agent to be safe without additional fine-tuning procedure.
Self-alignment by leveraging the pretrained distribution from offline RL dataset could be an easier way
to deploy an agent more safely. Self-alignment (Sun et al., 2023) is one of the alignment approaches
for Large Language Models (LLMs), which induces desirable outputs for specific instruction prompts.
It enables efficient adaptation of LLMs for a particular purpose without fine-tuning by utilizing
the reasoning and generative power of transformer-based large models. To apply self-alignment to
model-based RL agent, we use the proposed transformer-based architecture which is composed of an
agent and a world model to learn policy and predictive model simultaneously, by generating a virtual
imagination of agent trajectory.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑆0

Real test
trajectory

𝑆0Prompt

Imagined

trajectories

World

Model

World

Model

At test time

World

Model

Figure 1: An illustration of the three stages of our Self-Alignment for offline safe RL. We illustrate
one of the safety gym environments in the middle box, where small circles and squares represent
hazards, and a green circle indicates the goal region. At test time for the downstream task, we first
use the RL transformer to generate several imagined trajectories for a given initial state. Secondly,
we compute the occupancy measure and the Lyapunov condition of state-action pairs in imagined
trajectories to determine which trajectory violates the Lyapunov condition the least. For example,
✖ denotes a (s, a) pair that incurs a high cost and violates the Lyapunov condition simultaneously.
Finally, we retrieve the best trajectory segment from the candidate imaginations for prompt and
augment the retrieved segment and initial state for self-instruction at test time.

Transformer-based RL has shown the ability of prompt-based alignment, which enforces transformers
to conduct in-context learning and produce a desirable behavior for a given prompt. For example,
training multi-modal prompts, which consist of text, video, and trajectory data (Jiang et al., 2023a),
enables the model to solve various robot manipulation tasks and shows remarkable generalization
capability for unseen complex tasks. However, the specific structure of the training input data, where
the prompt and trajectory tokens lie in consecutive order, is needed to adapt to a newly defined task.

In this work, we propose a self-alignment technique by self-generated prompt to guarantee the better
safety. Our self-generated prompt for safety is based on Lyapunov condition. To implement self-
alignment for safety, we present a novel formulation of Lyapunov condition as a probabilistic inference
and transformer-based RL world model as a model-based hierarchical RL agent, respectively, to
provide in-context learning based self-alignment. We present an overview of our algorithm, which
we call self-alignment for safety (SAS), in fig. 1. First, the proposed transformer-based model with
the agent and the world model generates several imagined trajectories using the learned policy and
predictive model from the data distribution. We evaluate the safety using the proposed inference
model of the Lyapunov condition, and feed the most likely trajectory in terms of the Lyapunov stability
condition into a prompt of our model. The given prompt instructs our model to act in accordance
with its Lyapunov condition property. We explain this ability of our transformer-based architecture as
a skill-conditioned hierarchical RL in section 5.1. In our experiments, we demonstrate the efficiency
and safe deployment of SAS in 12 Safety Gymnasium environments (Ji et al., 2023) and OpenAI
Gym Mujoco (Brockman et al., 2016). SAS outperforms prior safe RL methods by up to 2 times on
Safety Gymnasium benchmarks and 2 times on Mujoco in terms of failure rate.

2 RELATED WORK

Transformer-based RL. Transformer-based RL (Janner et al., 2021; Chen et al., 2021) has been
emerged by making a connection between pretraining of GPT (Radford et al., 2018) and offline RL
with prior data. Recently, several model-based RL methods with transformers, which are called world
model, lead to sample efficient online RL by leveraging the structure of auto-regressive generation
in terms of imagination in model-based RL, such as TWM (Robine et al., 2023) and IRIS (Micheli
et al., 2023). For predictive model, TWM applies VAE (Kingma & Welling, 2013), and IRIS uses
VQGAN (Esser et al., 2021) to reconstruct the observation. Prompting on transformer-based RL was
also proposed to help task specification with multi-model prompts (Jiang et al., 2023b), and achieve
test-time adaptation by learning with prompts from scratch (Xu et al., 2022b). CDT(Liu et al., 2023b)
is similar to our work since CDT uses decision transformer for offline safe RL by modifying the
DT architecture to feed the cost value to train an offline safe RL agent. Unlike prior works, we aim

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to align the transformer for model-based RL by providing self-generated instruction for in-context
learning without any fine-tuning.

Safe RL and Lyapunov condition. Lyapunov condition has been applied to safe control (Chang
et al., 2019) and safe RL (Chow et al., 2018) in many different ways. LDM (Kang et al., 2022)
proposed an integration of Lyapunov condition and offline RL to avoid distribution shift for safety.
While safe RL algorithms are usually formulated as constrained MDP, which introduces a control
barrier functions to prevent an RL agent from entering unsafe regions (Bansal & Tomlin, 2021; Ganai
et al., 2023; Kim et al., 2023), we instead focus on validating Lyapunov condition for safety to avoid
unsafe regions caused by the distribution shift (Tedrake, 2009; Bharadhwaj et al., 2020). DCRL (Qin
et al., 2021) is similar to ours in online safe RL, which employs a constraint on the level of state
density to stay in the highly probable states. In contrast, SAS does not require a constrained RL
tuning for transformer or cost, and adapt a safe RL task by self-alignment at test time.

Large model alignment. Alignments in LLMs have been proposed to learn human preference
or make pretrained models safer and more helpful recently (Ouyang et al., 2022). For example, a
pretrained general language assistant can be aligned to be helpful, honest, harmless (HHH) (Askell
et al., 2021). Alignment methods for LLMs can be classified into RLHF (John Schulman, 2022) and
instruction based in-context learning (Sun et al., 2023; Wang et al., 2023). Alignment by instruction
is an emerging technique to align large language models (LLMs) output with a specific desired
behavior by engineering instruction prompt (Brown et al., 2020), RLHF (Ouyang et al., 2022), and
zero-shot reasoner (Kojima et al., 2022). In RL, aligning Large Models (LMs) from pretrained
distribution is natural and well-behaved in LLMs for human preference, but very limited for unseen
task specification by demonstration (Jiang et al., 2023a) and learning for augmented prompt (Xu
et al., 2022b), even though alignment for safety is essential to ensure safety in real-world RL.

3 PRELIMINARIES

Problem Setting. We consider a discounted Markov Decision Process ⟨S,A,R, C,P,PS1 , γ⟩,
where S, and A are observation and action spaces, R : S × A× S → R and C : S × A× S → R
are reward and cost functions, P : S × A → S is the transition operator, PS1 : S → [0, 1] is the
initial state distribution, and γ ∈ (0, 1) is the discount factor. We first define latent skill space Z
and consider two following hierarchical policies. The high-level policy πhigh

θ : S × Z → Z with
parameter θ for skill selection maps the previous latent skill and the observation to the choice of
learned skills z ∈ Z from the pre-collected experience. The low-level policy πlow

ϕ : S ×Z → A with
parameter ϕ interacts with environment with given skill in the agent’s action space.

Density Constrained Safe RL. From a conservatism, constraining the density of states and actions
has been studied to enhance the agent safety. Lyapunov Density Model (LDM) (Kang et al., 2022)
and DCRL (Qin et al., 2021) are offline and online safe RL frameworks, which design the constraint
regions based on density. In the case of offline safe RL, LDM leverages Lyapunov stability condition
to constrain the density of state-action pairs over a long horizon. Finding a control Lyapunov function
for arbitrary MDP is a challenging problem. To tackle this issue, LDM provides a modified version
of Bellman operator which can be interpreted as learning a control Lyapunov function by the offline
data. Specifically, this learning process stitches policies toward more probable terminal states. To
guarantee that an offline RL agent does not escape from sinking into the low density region, we first
introduce the control invariant set and the condition of Lyapunov model of LDM as follows:
Definition 3.1. Let (se,ae) be an equilibrium point and τ = ((s1,a1), · · · , (se,ae)) be an Lyapunov
stable trajectory. For all Lyapunov stable trajectories τ , LDM G(st,at) must satisfy the following:

(1) G(se,ae) = 0, (2) G(st,at) > 0, ∀(st,at) ̸= (se,ae), (3) G(st,at) ≥ G(st+1,at+1).

To learn a valid control Lyapunov function, the LDM backup operator is defined as

TLDMG(s, a) = max{− log ρ(s, a), γmin
a′

G(P(s, a), a′)} (1)

where ρ(s, a) is a density of given state and action. For a Lyapunov density model G(st,at), there
exists a control invariant set for a constant c > 0:

Rc = {(st,at)|G(st,at) ≤ c}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Intuitively, a greedy policy of the Lyapunov density model, argmina G(s, a) does not escape from
the control invariant setRc and eventually reaches the equilibrium point where, by the definition, has
the highest density value in the control invariant setRc.

4 MODELING OFFLINE SAFE RL AS DENSITY-BASED LYAPUNOV CONTROL

In this work, we introduce a transformer network based on the Decision Transformer (Chen et al.,
2021) architecture and extend this to include a VAE (Kingma & Welling, 2013) based predictive
model to incorporate imaginations for searching safe candidate trajectories within the model-based
RL framework. The detailed architecture of our transformer model is described in table 5. Since
we pretrain our transformer using the offline RL dataset D, we utilize learned predictive model
distribution and the policy distribution to compute an approximate Control Lyapunov function which
is analogous to LDM. Rather than using one-step density value, we use the occupancy measure
estimate ρ̂ by computing the following equation:

ρ̂(s, a) =

∞∑
t=0

γtρ(st = s,at = a|PS1
, π, T) =

∞∑
t=0

γtρVAE(st = s|PS1
, π, T)π(at = a|st = s),

where ρVAE and π denotes the density estimation of VAE and the policy. We note that the occupancy
measure estimate ρ̂ can be computed from the generated trajectory τ of autoregressive transformer.

To capture the connection between the density and offline safe RL, we introduce safe RL problem as
the constrained optimization problem as follows:

max
π

JR(π) s.t. JC(π) ≤ d, (2)

where JR(π), JC(π) are the expected discounted sum of reward/cost functions, respectively. We
reformulate eq. (2) in terms of occupancy measure as

max
π

Es,a [ρ
π(s, a)r(s, a)] s.t. Es,a [ρ

π(s, a)C(s, a)] ≤ d.

Let U be the universal set of state-action space and B be the set {(s, a)|(s, a), C(s, a) < Cth} where
Cth is the some threshold of cost which satisfies Cth ≤ d(1 − γ). Assume that the cost value is
bounded as 0 ≤ C(s, a) ≤ Cmax. We define a volume constant α = E(s,a)∼U [1((s, a) ∈ B)], which
is 0 < α < 1. Then, we can write the above inequality as

JC(π) = E(s,a)∼B [ρ̂π(s, a)C(s, a)] + E(s,a)∼BC [ρ̂π(s, a)C(s, a)]

JC(π)− d = E(s,a)∼B [ρ̂π(s, a)C(s, a)]− αd+ E(s,a)∼BC [ρ̂π(s, a)C(s, a)]− (1− α)d

≤ E(s,a)∼B [ρ̂π(s, a)Cth − d] + E(s,a)∼BC [ρ̂π(s, a)Cmax − d] . (3)

We can observe that expert policies in the offline RL dataset D should have low values in BC to
satisfy the constraint inequality of eq. (3) less than zero. Now, we know that reducing the marginal
value of occupancy measure over BC leads to the lower bound of the cost function of π. Suppose
that ρ̂π(s, a) ≤ d

Cmax
for (s, a) ∈ BC . We consider the definition of occupancy measure and assume

that occupancy measure is a continuous function. We have d
Cmax

≤ ρ̂π(s, a) ≤ d
Cth
≤ 1

1−γ for
(s, a) ∈ B, and then get JC(π)− d ≤ 0. This is an intuitive condition to be an expert policy trained
by the constrained RL in eq. (2). Now, we generalize the above condition into more general offline RL
scenario. We consider the occupancy measure of the given offline data, ρdata(s, a) and the occupancy
measure of optimal policy ρ̂π∗ satisfies the single policy concentrability:

ρ̂π∗(s, a)/ρdata(s, a) ≤ D

where all (s, a) ∈ S × A, and D = max
π

Dπ represents the widely-used uniform concentrability
coefficient. This assumption, drawn from (Rashidinejad et al., 2021), is used to incorporate various
sources of offline RL data, including medium-level datasets. To prevent having overestimated density
in the region which might lead to failure, we insert the concentrability coefficient as a margin for
defining the target control invariant set under the pretrained distribution,

Rρ = {(s, a)|ρdata(s, a) ≥
d

CmaxD
}. (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This implies that the offline RL agent can avoid moving toward (s, a) ∈ BC by applying a penalty
using D. Our key idea is to search a density-based Lyapunov stable trajectory sample by the
imagination process of our model-based RL transformer. We first define the Energy E = − log ρ̂data
for convenience. From eq. (1), we define our approximate Lyapunov model as

GSAS(st,at) = log ρ̂data(st,at)−max
π

min
t′

log ρ̂data(st′ , π(st′)) (5)

= min
π

max
t′

E(st′ , π(st′))− E(st,at). (6)

where ρ̂data is the learned distribution of the offline RL dataset distribution ρdata. By randomly
sampling using the VAE and the stochastic policy of our transformer, we generate multiple trajectories
from imagination and compute the optimal sample based on eq. (5) across trajectories and time. Note
that repeating to get more samples induces the tighter upper bound of the control invariant set having
more probable actions. Finally, we define the target control invariant set in terms of ρdata(s, a) as

RSAS
G = {(st,at)|GSAS(st,at) ≤ − log

d

CmaxD
}. (7)

We note that the cost condition of d is applied to the density constraint in terms of control invariant
set. Now, we solve a Lyapunov stable policy in terms of GSAS, then have the offline safe RL policy.

4.1 DENSITY-BASED LYAPUNOV CONTROL AS PROBABILISTIC INFERENCE

To search and infer safe imagined trajectory samples, we propose the probabilistic inference formula-
tion of Lyapunov condition in Definition 3.1.
Theorem 4.1 (Lyapunov Condition Observable). Let two observables Ut and Vt be the indicator
variables

Ut = 1 [GSAS(st,at) > 0] , Vt = 1 [GSAS(st,at)−GSAS(st+1,at+1) ≥ 0] . (8)

The problem of finding a trajectory from Lyapunov stable controller is equivalent to solve the following
inference problem:

max
τ

1

T

∑
t

log (P (Ut = 1|τ)P (Vt = 1|Ut = 1, τ)) , (9)

where T is the length of trajectory τ .

See appendix E for proof. We note that the first Lyapunov condition observable Ut is indirectly
computed by lines 1 to 6 in Algorithm 1. In the first loop of Algorithm 1, among the N iterations, we
select the episode with the lowest maximum energy value reached by each imagined trajectory. In line
6, we set the selected lowest maximum energy Êj as the value of our approximate Lyapunov model
for the equilibrium point, GSAS(se, ae) = minπ maxt′ E(se, ae)− e(se, ae) = Êj −E(se, ae) = 0.
Then, all other N − 1 episodes have steps with G(s, a) < 0 inevitably due to GSAS(se, ae), leading
to violation of the condition Ut = 1. To search for a Lyapunov stable policy which guarantees all
state-action pair elements are in RSAS

G in Equation 7, we assume that a test-time agent can access a set
of previously learned policies, Π = {πi}Ni=1 from pretrained distribution. Each generated trajectory
at i-th iteration, τi, corresponds one-to-one to a certain πi ∈ Π at given initial state s0. As we
increase the number of iterations of the first loop, N →∞, we can get a lower Êj , which leads to
the more probable subsequent (s, a) and equilibrium point. Furthermore, selecting the most probable
index k∗ in the second for-loop implies that we choose the optimal-selection policy which violates
the condition Vt least. Then, the selected π is highly likely to satisfying in the control invariant set
{(s, a)|0 ≤ GSAS(s, a) ≤ Êj}. Now, we rewrite Equation 6 for Algorithm 1 as

GSAS(st,at) = log ρ̂data(st,at)− max
i=1,··· ,N

min
j=1,···T

log ρ̂data(sj , πi(sj))

= min
i=1,··· ,N

max
j=1,···T

E(sj , πi(sj))− E(st,at).

We now demonstrate that Algorithm 1 reduces the probability of escaping from the control invariant
set as the numbers of iterations, N and M for the first and second loops, respectively, increase.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Self Alignment To be Safe (SAS). Self-generating prompt for instruction.
Require: Pretrain transformer from D and environment initial state stest

1 ∼ PS1

1: for i = 1, 2, 3, . . . , N do ▷ for condition Ut
2: Sample τi ∼ p(τ |stest

1) by imagination
3: Compute Et of each time-step t

4: Êi, ti ← max
t

Et, argmax
t

Et

5: end for
6: j ← argmin

i
Êi

7: Compute an initial prompt p̃1:L ← τj [tj − L : tj]
8: for k = 1, 2, 3, . . . ,M do ▷ for condition Vt
9: Sample τ ′k ∼ p(τ |p̃1:L, s

test
1)

10: Compute Et of each time-step t

11: Êk, tk ← max
t

Et, argmax
t

Et

12: vk ←
∑

t Vt
13: end for
14: k∗ ← argmax

k
vk

15: Prompt p1:L ← τ ′k∗ [tk∗ − L : tk∗] ▷ self-alignment

Proposition 4.2 (Probability of out-of-distribution trajectory). Assume that the sampled state action
pairs (st, at) in the trajectory is i.i.d. Let τ = {(st, at)}Tt=1 denote the set of state-action pairs in the
trajectory with length T and D is the pretrained distribution of expert trajectories. By Assumption
E.1, the probability that the best trajectory escapes from the target control invariant set in Algorithm
1 is bounded and decreases as the numbers of iterations N,M →∞ as follows:

P [τbest ̸⊂ R] ≤
[E(s,a)∼D[− log ρ̂data(s, a)]

c2

]NT

+ exp

(
−2Mκ2(c2 − c1)

2

TL2

)
(10)

The proof is in appendix E.3.

5 SELF-ALIGNMENT FOR SAFE RL WITH LYAPUNOV CONDITION

When we aim to make a transformer-based model aligned for a downstream task, the model can
learn the given task by conditioning a prompt which is composed of demonstration examples. This
remarkable ability is called in-context learning, which can be explained by the implicit Bayesian
conditional inference with demonstration prompt in NLP domain (Xie et al., 2021). The given
demonstration prompt into transformer predicts an aligned output which is conditioned on the prompt.
The inference probability is defined as the following posterior predictive distribution:

p(output|prompt) =
∫

p(output|prompt, θ)p(θ|prompt)dθ,

where θ is called latent concept. The latent concept θ serves as a parameter determining the transition
of the hidden Markov model p(output|prompt, θ), which corresponds to a learned conditional dis-
tribution of pretraining sequence dataset on a latent concept θ. Then, the conditional inference of latent
concept θ on prompt selects the parameter of pθ(output|prompt) = p(output|prompt, θ)
and makes it possible to generate an aligned output. In this section, we formulate our transformer
as a hierarchical RL and decompose the policy into two policies, high-level and low-level policies.
Analogous to the above implicit Bayesian concept, we now assume that the parameter of high-level
policy corresponds to the latent concept. All proofs in appendix E.

5.1 MODEL-BASED RL WITH TRANSFORMER AS PROBABILISTIC INFERENCE

We extend the probabilistic graphical model of skill-based hierarchical RL to describe our model. We
show that the pretrained transformer can implicitly perform Bayesian inference. To define the world

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

model as a HMM, we consider a probability distribution of trajectory τ as

p(τ) = p(s1)
∏
t=1

p(st+1|st,at)p(at|st, zt)p(zt|st, zt−1).

𝑠𝑠1 𝑠𝑠2 𝑠𝑠3

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝒪𝒪1 𝒪𝒪2 𝒪𝒪3

Figure 2: The probabilistic graphical
model of model-based hierarchical RL.
Our model is a HMM where Ot is the
optimality variable that correspond to
P (Ut = 1,Vt = 1).

where p(st+1|st,at) denotes the transition probability of
transformer, and we abuse the notation p(z1|s1, z0) as
p(z1|s1) for brevity and clear notation. To understand
this graphical model as a hierarchical RL, we consider
the hidden layer of transformer as a latent skill variable
zt. To show that the transformer has the property of in-
context predictor, we also define the conditional probabil-
ity p(τ |p1:L, s

test
1) where stest

1 is the initial state at test-time,
p1:L is a prompt demonstration with length L, as

p(τ |p1:L, s
test
1) =

∫
θ

p(τ |p1:L, s
test
1 , θ)p(θ)dθ, (11)

where we define θ as the parameter of high-level policy
πhigh
θ . At test time, we generate an output trajectory start-

ing from stest
1 by predicting the first latent skill variable

ztest
1 with the prompt demonstration p1:L and θ. We can

write the conditional probability p(τ |p1:L, s
test
1 , θ) for a

given θ as

τ ∼
∑

ztest
1 ∈Z

[
p(τ |stest

1 , ztest
1 , θ)p(ztest

1 |p1:L, s
test
1 , θ))

]
=
∑

ztest
1 ∈Z

∏
t=1

p(stest
t+1|stest

t ,atest
t)︸ ︷︷ ︸

VAE decoder

p(atest
t |stest

t , ztest
t)︸ ︷︷ ︸

πlow
ϕ

pθ(z
test
t |stest

t , ztest
t−1)︸ ︷︷ ︸

πhigh
θ

=:
∑

ztest
1 ∈Z

gπθ
(τ, ztest

1), (12)

where we abuse the notation pθ(z
test
1 |stest

1 , ztest
0) = pθ(z

test
1 |p1:L, s

test
1) for clarity. It im-

plies that we have the random skill variable ztest
1 which is sampled by the given the high-

level policy parameter θ. We also note that p1:L is a demonstration state-action sequence,
(s−L+1,a−L+1, s−L+2,a−L+2, · · · , s0,a0). Then, the prompt can be viewed as a concatenation in
front of the following trajectory in Figure 2.

Our goal is to find the safe policy πhigh
θ∗ analogous to the demonstration prompt p1:L. We note

that the pretrained transformer marginalize over the family of high-level policies in the offline
RL dataset as in eq. (11). More specifically, the dataset D is composed of the trajectories from
behavior polices, and then it implies that the transformer learns the distribution from the feasible
high-level policy parameter space. To retrieve θ∗ of the safe high-level policy πhigh

θ∗ corresponding to
a given prompt p1:L, we first define the optimality variable Ot in Figure 2 as Ot = 1 [(st,at) ∈ Ct]

where Ct = {(st,at)|(st,at) ∼
∑

zt,zt−1
πlow
ϕ (at|st, zt)πhigh

θ∗ (zt|st−1, zt−1)}, the set of all possible
state-action pairs with θ∗. We can describe the inference p(Otraj|p1:L, s

test
1) as follows:

p(Otraj|p1:L, s
test
1) =

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1)

∏
t=1

p(Ot|stest
t ,atest

t)

)
eL·rL(θ)p(θ)dθ, (13)

where rL(θ) = 1
L log

p(O1:L,stest
1 |θ)

p(O1:L,stest
1 |θ∗) . The prompt (sL−1,aL−1, · · · , s0,a0) is originally from the

high-level policy with θ∗. We have O1:L = 1 when θ = θ∗ is selected and get eL·rL(θ) → 1. Then,
we can retrieve the safe high-level policy parameter of πhigh

θ∗ to the demonstration prompt p1:L by the
above selection property in eq. (13) and regenerate and execute at the test time under θ∗. This differs
from the original implicit Bayesian inference (Xie et al., 2021) in two ways: (1) we introduce the
low-level policy πlow

ϕ (at|st, zt) term that enable the implicit Bayesian inference method to work on
the RL domain with action space; and (2) the transformer inherits the predictive transition model
p(st+1|st,at) to generate an imaginary trajectory coincided with the real environment.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: SAS dodges hazard better. We visualize PointGoal1-v0. Left: The illustrated env.
has 8 fixed hazards, one movable obstacle vase, and one goal position. Middle: We visualize
ρ̂data(s) at each point by using our transformer. Right: We illustrate two trajectories without
self-alignment and our DT+SAS. The landscape visualizes GSAS where the blue color indicates the
sub-level of GSAS. We mark Region Of Attraction (ROA) with blue dot lines, which means a forward
invariant set where we can guarantee the upper bound of density. Red lines means the invalid region
where exceed the 95 percentile of GSAS(st,at), which indicates unsafe region.

5.2 INSTRUCTION PROMPT GENERATION FOR SAFETY

Offering good exemplar in-context demonstrations (prompt) for alignment usually relies on extensive
human supervision. Inspired by Dromedary (Sun et al., 2023) for LLMs, we align our transformer
to act more stable and safer by itself without any human instruction or seed prompts. In algorithm 1,
our Self-Aligning RL agent behavior to be Safe (SAS) method involves the following procedures. 1)
Lyapunov-conditioned instruction generation provides the selection rule for Lyapunov condition
to create an exemplar demonstration for reasoning a safer high-level policy πhigh

θ by imagination of
transformer. To generate instruction demonstration for in-context learning, we follow eq. (9) to satisfy
Lyapunov condition from line 1 to 14. 2) Internal thoughts is the generated behavior trajectory
which already satisfies Lyapunov condition enough in line 7 and 14. We do not need to prepare a few
in-context learning demonstration to generate internal thoughts for the final instruction. 3) Guiding
the final behavior of RL transformer is the final stage with the internal thoughts for in-context
learning demonstrations to align with a safer πhigh

θ by annotating with initial state in line 15.

6 EXPERIMENTS

We demonstrate the performance of SAS in mujoco (Brockman et al., 2016) and Safety
Gymnasium (Ji et al., 2023) to evaluate the three metrics, reward return, cost return, and fail-
ure rate. We use D4RL dataset (Fu et al., 2021a) for mujoco and DSRL (Liu et al., 2023a) for safety
gymnasium. We use normalization of both reward and cost returns. We denote DT as DT+SAS and
CDT as CDT+SAS when we apply SAS. We modify DT (Chen et al., 2021) to predicts next state and
next return-to-go as well as action. In all results, we abbreviate the task name as follows: (PointGoal1,
PG1), (PointPush1, PP1) and (CarButton2, CB2). The detailed experiment setting is in appendix B.

Does the proper internal thought make a safer decision? Overall, DT+SAS shows the lower
cost and failure rate than DT in most environments in table 1. We note that reward may decrease as a
trade-off by Lyapunov condition to reduce the aspect of pursuing high reward in DT. However, in
some tasks, such as PG2, it is surprising that the reward of DT+SAS is higher than DT. In tasks, like
PB1, all metrics, reward, cost and failure rate increase simultaneously. It implies that DT has trained

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Ablation study in the Safety Gymnasium. DT+rand involves inserting a random trajectory
into the prompt, and DT+maxmax includes the trajectory with the argmax of the maximum value of
E as the prompt. Bold: the smallest cost among the four models. Blue: DT+SAS has a lower failure
rate than DT. Red: DT+SAS has a higher cost than DT but the reward is also higher.

Environment PG1 PG2 PP1 PP2 PB1 PB2 CG1 CG2 CP1 CP2 CB1 CB2
reward 0.660 0.377 0.218 0.202 0.379 0.495 0.638 0.513 0.35 0.204 0.237 0.212

cost 1.319 2.625 0.927 0.782 1.188 1.309 0.976 1.466 0.678 1.174 1.419 1.045DT
failure 0.883 1.000 0.667 0.875 0.950 0.983 0.917 0.925 0.667 0.950 0.950 0.950
reward 0.655 0.650 0.283 0.242 0.485 0.508 0.666 0.483 0.307 0.218 0.174 0.138

cost 1.185 1.783 0.622 0.639 1.375 1.205 0.846 1.148 0.513 1.158 1.083 0.836DT+SAS(ours)
failure 0.867 0.983 0.767 0.850 0.950 0.967 0.867 0.850 0.483 0.900 0.975 1.000
reward 0.665 0.587 0.303 0.240 0.445 0.462 0.672 0.507 0.311 0.230 0.175 0.111

cost 1.258 1.811 0.678 0.758 1.485 0.960 1.002 1.438 0.549 1.341 1.259 0.963DT+rand
failure 0.900 1.000 0.767 0.875 1.000 0.950 0.867 0.975 0.617 0.950 0.975 0.925
reward 0.644 0.521 0.271 0.200 0.486 0.441 0.636 0.512 0.321 0.206 0.131 0.126

cost 0.990 2.152 0.640 0.730 1.808 1.273 1.034 1.497 0.574 1.271 1.103 0.911DT+maxmax
failure 0.775 1.000 0.767 0.783 1.000 0.950 0.817 0.933 0.625 0.975 0.967 0.975

Table 2: Full Results in Safety Gymnasium. The values are averaged across three different cost
thresholds, 20 evaluation episodes, and three random seeds. Gray: Unsafe agents. Bold: Safe agents
whose normalized cost is less than 1. Blue: Agents which has highest reward among safe agents.

DT + SAS CDT + SAS CDT BC-All BC-Safe BCQ-Lag BEAR-Lag CPQ COptiDICE DCRL
Task

reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost
PointGoal1 0.66 1.19 0.65 1.27 0.69 1.12 0.65 0.95 0.43 0.54 0.71 0.98 0.74 1.18 0.57 0.35 0.49 1.66 0.24 0.86
PointGoal2 0.65 1.78 0.52 0.94 0.59 1.34 0.54 1.97 0.29 0.78 0.67 3.18 0.67 3.11 0.4 1.31 0.38 1.92 0.28 0.26
PointPush1 0.28 0.62 0.26 0.54 0.24 0.48 0.19 0.61 0.13 0.43 0.33 0.86 0.22 0.79 0.2 0.83 0.13 0.83 0.01 0.52
PointPush2 0.24 0.64 0.20 0.53 0.21 0.65 0.18 0.91 0.11 0.8 0.23 0.99 0.16 0.89 0.11 1.04 0.02 1.18 0.02 0.07

PointButton1 0.49 1.38 0.51 1.27 0.5 1.68 0.1 10.5 0.06 0.52 0.24 1.73 0.2 1.6 0.69 3.2 0.13 1.4 0.01 0.48
PointButton2 0.51 1.14 0.41 0.98 0.46 1.57 0.27 2.02 0.16 1.1 0.4 2.66 0.43 2.47 0.58 4.3 0.15 1.51 0.18 0.64

CarGoal1 0.67 0.85 0.65 0.90 0.66 1.21 0.39 0.33 0.24 0.28 0.47 0.78 0.61 1.13 0.79 1.42 0.35 0.54 0.35 0.88
CarGoal2 0.48 1.15 0.42 0.98 0.48 1.25 0.23 1.05 0.14 0.51 0.3 1.44 0.28 1.01 0.65 3.75 0.25 0.91 0.11 2.51
CarPush1 0.31 0.51 0.31 0.49 0.31 0.4 0.22 0.36 0.14 0.33 0.23 0.43 0.21 0.54 -0.03 0.95 0.23 0.5 -0.1 0.09
CarPush2 0.22 1.16 0.21 0.75 0.19 1.3 0.14 0.9 0.05 0.45 0.15 1.38 0.1 1.2 0.24 4.25 0.09 1.07 -0.13 0.17

CarButton1 0.17 1.08 0.27 0.98 0.21 1.6 0.03 1.38 0.07 0.85 0.04 1.63 0.18 2.72 0.42 9.66 -0.08 1.68 0.12 0.95
CarButton2 0.14 0.84 0.30 1.11 0.13 1.58 -0.13 1.24 -0.01 0.63 0.06 2.13 -0.01 2.29 0.37 12.51 -0.07 1.59 0.09 1.42

insufficiently by evaluating long-horizon ρ̂ enough, so SAS can correct long-term behavior that can
increase reward, but cost also increase by the absence of enough cost information.

Table 3: Performance of the DT and DT+SAS in the MuJoCo
environments with D4RL datasets. Only in this table, we
compute rewards using the normalized scoring method from
the CQL paper (Kumar et al., 2020). Bold: Agents with
lower failure or higher reward.

Hopper Walker2d Humanoid
Environment

expert medium expert medium expert medium
reward 110.7 86.6 107.7 82.2 98.5 40.5

DT
failure 0.05 1 0 0.54 0.20 0.97
reward 110.7 87.5 107.7 89.5 103.5 50.6DT+SAS
failure 0.03 1 0 0.46 0.10 0.87

DT+SAS has the lower cost com-
pared to random trajectory instruc-
tion (DT+rand) in table 1. The cost
values of DT+rand are higher than
DT in half of total safety-gymnasium
tasks. We can confirm that SAS is
a valid self-generated instruction for
DT. SAS uses E in Condition Ut to be
more stable and selects the trajectory
with the minimum value of the max-
imum E among steps in a trajectory.
For ablation study, we also conduct
the case of selecting a trajectory with the maximum value of maximum step E among trajectories
(maxmax). In table 1, it is evident that, compared to the DT+SAS model, DT+maxmax model
exhibits higher cost and failure in the majority of environments. Additionally, the DT+maxmax
model demonstrates lower reward values compared to the DT+SAS model, except in 2 tasks. As seen
in the results of DT+rand and DT+maxmax, our SAS algorithm-based prompting, which verifies the
Lyapunov function, enables the Transformer to make much safer choices during the action selection
process. This demonstrates that providing a prompt generated before interacting with the actual
environment influences the overall performance throughout the episode, much like selecting an
appropriate initial skill in hierarchical RL. In table 3, DT was trained on both medium and expert
datasets. In mujoco, cost is not explicitly provided, so we only report reward and failure. As we
mentioned above, we evaluate the failure when the agent terminated before max episode length.
DT+SAS generally shows higher reward and lower failure compared to DT. In Walker2d, the failure
rate of DT for expert dataset is already 0 with 100 episodes, so we cannot observe the improvement
of SAS. However, for medium dataset, we observe the better performance in both reward and failure,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: The undertrained DT graph illustrates the performance with and without SAS to the
undertrained DT. Without Vt represents the results of the ablation study without Vt in section 5.3. UV
corresponds to SAS, and U represents without applying Vt. The remaining figures are in Appendix C.

which means SAS is also effective in Walker2d. In Humanoid, both in the expert and medium dataset,
DT+SAS outperforms DT in all three metrics. APE-V algorithm (Ghosh et al., 2022a) (belief-based
adaptation) uses offline ensemble C51 with SAC-N to enhance the performance by adaptive training
for downstream task. In walker2d medium APE-V algorithm improved the average return by 2.7%,
but we note that DT+SAS outperform DT by improving 8.9% for the average return in Table 3. SAS
does not require fine-tuning or retraining, but APE-V shows the worse test-time performance.

Does SAS outperform than offline safe RL methods? Since SAS is designed for test time
adaptation of DT, we can apply both DT and CDT for alignment. In table 2, We can see that SAS
method shows safer performance than without SAS, as cost and failure rate decrease in most tasks.
Except for PG1, PP1, and PB1 environments, DT+SAS or CDT+SAS achieves the highest rewards
among all baselines even with cost less than 1. In particular, in PB2, CDT+SAS stands out as
the only safe algorithm demonstrating decent rewards. Compared to baselines, CDT+SAS exhibits
superior performance in CB2, while in CB1, DT+SAS performs remarkably better. When we compare
CDT+SAS with CDT, it is evident that cost consistently decreases. In addition, in six tasks, cost even
decreases falling below 1, which means it lowers the target cost to be safe. SAS ensures that, at test
time, the pretrained DT can be aligned better with the distribution of the offline dataset. When DT
is worse than the collected expert in offline dataset, SAS boost the performance of reward. We also
conduct the case that the Decision Transformer that had not been sufficiently trained (undertrained
DT), and the outcomes are detailed in fig. 4. As observed, while the cost and failure rates experienced
an increase, the reward also increased. Our method is effective in enhancing the reward of a less
trained Decision Transformer at the test time. We utilize the initial prompt derived from Ut and
generate the prompt with Vt. We conducted tests using the initial prompt obtained from Ut directly at
test time, without incorporating Vt. We can observe that the cost decreases in all three environments.
In the case of failure, the failure decreased in all environments except for the CarGoal1 tasks.

Offline RL methods often rely heavily on one-step RL, whereas our SAS approach performs depth-
first search during the inference process through internal thought. This allows for verification of safe
control performance for the entire episode of the selected high-level policy. This advantage explains
why our method outperforms traditional safe RL methods. It’s also important to note that even in
scenarios where cost-based offline safe RL has already been applied to CDT, prompting can further
improve the overall performance throughout the episode which can be seen in table 2.

7 CONCLUSION

Deploying downstream controller with offline RL is an important key to achieving real-world deep
RL practical. Unlike the other machine learning domains, such as NLP, it is hard to collect high
quality real-world dataset for pretraining. To solve this problem, we propose self-alignment method
for transformer based RL to align an offline RL agent to be stable for safety and better performance.
It is hoped that the proposed method may trigger new insights on further improvements in safe
exploration and stable downstream task deployment in RL.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Somil Bansal and Claire J Tomlin. Deepreach: A deep learning approach to high-dimensional
reachability. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.
1817–1824. IEEE, 2021.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. In International Conference on
Learning Representations, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural
information processing systems, 32, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. Advances in neural information processing systems,
31, 2018.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. Advances in Neural Information
Processing Systems, 35:23230–23243, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021a.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4{rl}: Datasets for deep
data-driven reinforcement learning, 2021b. URL https://openreview.net/forum?id=
px0-N3_KjA.

Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Lee Herbert, and Sicun Gao. Iterative reachability
estimation for safe reinforcement learning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why gen-
eralization in RL is difficult: Epistemic POMDPs and implicit partial observability. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=QWIvzSQaX5.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained
to be adaptive, 2022a.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline RL policies should be trained
to be adaptive. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 7513–7530. PMLR, 17–23 Jul
2022b. URL https://proceedings.mlr.press/v162/ghosh22a.html.

11

https://openreview.net/forum?id=px0-N3_KjA
https://openreview.net/forum?id=px0-N3_KjA
https://openreview.net/forum?id=QWIvzSQaX5
https://proceedings.mlr.press/v162/ghosh22a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. Advances in Neural Information Processing
Systems, 33:7248–7259, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Juntao Dai, and Yaodong Yang. Safety-gymnasium: A unified safe reinforcement
learning benchmark, 2023.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: Robot manipulation with multimodal
prompts. In International Conference on Machine Learning, pp. 14975–15022. PMLR, 2023a.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. VIMA: Robot manipulation with multimodal
prompts. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 14975–15022. PMLR,
23–29 Jul 2023b. URL https://proceedings.mlr.press/v202/jiang23b.html.

et. al. John Schulman. Introducing ChatGPT — openai.com. https://openai.com/blog/
chatgpt, 2022.

Katie Kang, Paula Gradu, Jason J Choi, Michael Janner, Claire Tomlin, and Sergey Levine. Lya-
punov density models: Constraining distribution shift in learning-based control. In International
Conference on Machine Learning, pp. 10708–10733. PMLR, 2022.

Dohyeong Kim, Kyungjae Lee, and Songhwai Oh. Trust region-based safe distributional reinforce-
ment learning for multiple constraints. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Dohyeok Lee, Seungyub Han, Taehyun Cho, and Jungwoo Lee. SPQR: Controlling q-ensemble inde-
pendence with spiked random model for reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=q0sdoFIfNg.

Jongmin Lee, Cosmin Paduraru, Daniel J. Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation, 2022.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu,
Wenhao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe
reinforcement learning, 2023a.

12

https://proceedings.mlr.press/v202/jiang23b.html
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openreview.net/forum?id=q0sdoFIfNg
https://openreview.net/forum?id=q0sdoFIfNg

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning, 2023b.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world models.
In The Eleventh International Conference on Learning Representations, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Zengyi Qin, Yuxiao Chen, and Chuchu Fan. Density constrained reinforcement learning. In
International Conference on Machine Learning, pp. 8682–8692. PMLR, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702–11716, 2021.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world
models are happy with 100k interactions. In The Eleventh International Conference on Learning
Representations, 2023.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Daniel Cox,
Yiming Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch
with minimal human supervision. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=p40XRfBX96.

Russ Tedrake. Underactuated robotics: Learning, planning, and control for efficient and agile
machines course notes for mit 6.832. Working draft edition, 3(4):2, 2009.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-LONG.754. URL https://doi.org/10.18653/v1/
2023.acl-long.754.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2021.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline
reinforcement learning, 2022a.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In international conference on
machine learning, pp. 24631–24645. PMLR, 2022b.

13

https://openreview.net/forum?id=p40XRfBX96
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MODEL ARCHITECTURE

Inputs & Position Embedding

policy
 𝜋𝜋𝜙𝜙(𝑎𝑎𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑧𝑧𝑡𝑡)

Masked
Multi-Head
Attention

Masked
Multi-Head
Attention

Feed Forward
𝜋𝜋𝜃𝜃(𝑧𝑧𝑡𝑡|𝑠𝑠𝑡𝑡, 𝑧𝑧𝑡𝑡−1)

Add & Norm

Add & Norm

Add & Norm

𝑠𝑠𝑡𝑡

Linear 𝝓𝝓Linear

𝜽𝜽

�𝑅𝑅𝑡𝑡 𝑠𝑠𝑡𝑡 𝑎𝑎𝑡𝑡

𝑠𝑠𝑡𝑡

𝑠𝑠𝑡𝑡
𝑧𝑧𝑡𝑡

VAE
 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)

𝑁𝑁 ×

Figure 5: The architecture of decision transformer with VAE for model-based RL. The only difference
with decision transformer is the additional linear layer and VAE decoder to predict the next state.
We consider the output of feed-forward layer as the predictor of zt with the parameter θ which
corresponds to the high-level policy, and the combined values of st, zt by the attention and residual
connection are fed into the low-level policy with the linear layer ϕ.

B EXPERIMENT SETTING AND HYPERPARAMETERS

B.1 EXPERIMENT SETTING

We conduct Hopper, Walker2d, and Humanoid in OpenAI Gym, where the agent fails and terminates
when the sum of unhealthy rewards get larger. For Safety Gymnasium, we use two different robots
(Point, Car) in 3 tasks (Goal, Push, Button) with two difficulties (1,2) respectively. In
Goal and Button tasks, an agent navigate to the goal while avoiding touching hazards, and an
agent push a box to the goal in Push task. We denote normalized reward and cost returns as reward
and cost for simplicity, and use failure in Tables for failure rate. If an agent experiences any cost due
to encountering a hazard within an episode or exceeding unhealthy cost for mujoco (terminated),
we considered that episode as a failure episode. The baselines we used are CDT (Liu et al., 2023b),
Imitation Learning (BC-Safe, BC-All(Liu et al., 2023b; Xu et al., 2022a)), Distribution Correction
Estimation (COptiDICE(Lee et al., 2022)), and Q-learning (CPQ, BCQ-Lag, BEAR-Lag(Xu et al.,
2022a)).

B.2 NORMALIZED SCORE

We applied normalization to both reward return and cost return to make it easier to compare for
all environments. Let rmax(M) and rmin(M) denote the maximum reward return and minimum
reward return in the dataset T , respectively. Then, the normalized reward return is computed as:

Rnormalized =
Rπ − rmin(M))

rmax(M)− rmin(M)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where Rπ denotes the evaluated reward return obtained by the agent. Normalized cost return is
defined as the ratio between the cost return obtained by the agent and the target cost κ:

Cnormalized =
Cπ + ϵ

κ+ ϵ

where ϵ is a small positive number for numerical stability. The values are averaged across three
different cost thresholds, 20 evaluation episodes, and three random seeds.

B.3 DATASET DETAILS

We conducted experiments using the OpenAI Gym’s medium and expert datasets from https:
//github.com/Farama-Foundation/D4RL and the Safety Gymnasium’s expert dataset
from https://github.com/liuzuxin/OSRL/tree/main. Detailed information about
the dataset is presented in Table 4. The Max Cost means the maximum cost return in dataset
trajectories.

Table 4: Dataset details

Benchmark Task Max Timestep Action Space State Space Max Cost Trajectories

Safety Gymnasium

SafetyPointGoal1-v0

1000 2

60 100 2022
SafetyPointGoal2-v0 60 200 3442
SafetyPointPush1-v0 76 150 2379
SafetyPointPush2-v0 76 200 3242

SafetyPointButton1-v0 76 200 2268
SafetyPointButton2-v0 76 250 3288

SafetyCarGoal1-v0 72 200 1671
SafetyCarGoal2-v0 72 250 4105
SafetyCarPush1-v0 88 250 2871
SafetyCarPush2-v0 88 400 4407

SafetyCarButton1-v0 88 250 2656
SafetyCarButton2-v0 88 300 3755

B.4 HYPERPARAMETERS FOR THE EXPERIMENTS

During the training of Decision Transformer, we applied warmup for the first 10000 steps, and we
used the ReLU activation function. Further details about the hyperparameters can be found in table 5.

Table 5: Hyperparameters for the experiments

Common Parameters Safety-Gymnasium Parameters CDT DT
Action hidden size [256, 256] for all methods except CDT, DT Number of layers 3 3
VAE hidden size [400, 400] BCQ-Lag, BEAR-Lag, CPQ Number of attention heads 8 1
Cost thresholds [20, 40, 80] Embedding dimension 128 128
Gradient steps 100000 Batch size 2048 64
[KP , KI , KD] [0.1, 0.003, 0.001] BCQ-Lag, BEAR-Lag Context length K 300 20

Batch size 512 Learning rate 0.0001 0.0001
Actor learning rate 0.0001 Dropout 0.1 0.1
Critic learning rate 0.001 Adam betas (0.9, 0.999) (0.9, 0.999)

C ABLATION STUDIES

C.1 NUMBER OF TRAJECTORIES SAMPLED FOR IMAGINATION

We employ Decision Transformer to imagine multiple trajectories under both condition Ut and
condition Vt. In our case, we sampled 5 trajectories for each condition Ut and Vt. As part of
an ablation study, we compared the results of sampling 100 trajectories in experiment with our
experimental results. As we can see in fig. 6, the experiment revealed that there was not a significant
difference in the model’s performance due to the difference in the number of sampled trajectories. In
PointGoal1 environment, an increase in cost was observed when the number of sampled trajectories
was 100.

15

https://github.com/Farama-Foundation/D4RL
https://github.com/Farama-Foundation/D4RL
https://github.com/liuzuxin/OSRL/tree/main

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1 3 5
0.0

0.5

1.0

1.5

no
rm

al
iz

ed
 sc

or
e

PointGoal1

1 3 5

PointPush2

1 3 5

CarGoal1

numbers of prompt

Figure 6: Ablation studies on number of trajectories sampled for imagination. Red bar, blue bar,
green bar is reward, cost, failure score respectively

C.2 TIME STEP LENGTH TO CALCULATE E

We calculated and approximated E from trajectories imagined by Decision Transformer under both
conditions U and V. We conducted experiments with a default time step length of 3 for computing E.
As part of an ablation study, we also experimented with time step lengths of 1 and 10, comparing the
results with our findings, which are presented in fig. 4. In the results for the CarGoal1 environment,
the cost is lowest when the time step length is 10, while in the PointGoal1 environment, it is actually
highest. This indicates that increasing the time step length for calculating E does not noticeably
improve the model’s performance.

C.3 TIME STEP LENGTH OF TRAJECTORY IN PROMPT

We extracted the trajectory from a specific time t to 5 time steps before that from trajectories generated
through Condition Ut and Vt. We then fed this truncated trajectory into the prompt of Decision
Transformer at the test time. As part of an ablation study, we experimented with the time step length
of Decision Transformer’s prompt, setting it to 3 and 10, and the results are presented in fig. 4. For
each time step length of the prompt (3, 5, 10), there are instances where the cost in the experimental
results is the highest, as well as instances where it is the lowest. Hence, it can be concluded that the
time step length of the prompt does not significantly impact the model’s performance.

C.4 NUMBER OF PROMPTS

We proceeded by using a single trajectory fragment generated by our algorithm as the prompt for
Decision Transformer. As part of an ablation study, we compared the performance of our approach
with the method of concatenating three or five trajectory fragments obtained by running our algorithm
three or five times, respectively, and using them as a prompt. The experimental results in fig. 4 show
that the method of using five trajectory fragments as a prompt resulted in higher costs. While there is
some difference in the PointPush2 environment when the number of fragments is 1 or 3, overall, the
performance fluctuates without a clear trend.

C.5 MODEL SIZE OF DECISION TRANSFORMER

We conducted experiments to observe how the effectiveness of SAS varies with the model size of
the Decision Transformer. Starting from the smallest size, the default Decision Transformer, we
experimented with sizes ranging from gpt-mini to larger sizes like gpt2, and the results are depicted
in fig. 4. When examining the PointGoal1 environment, it seems that as the model size increases, the
cost also tends to increase. However, looking at the PointPush2 environment, the opposite trend is
observed, where the model with the smallest size has the highest cost, suggesting that there may not

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

be a significant correlation. However, concerning failures, except for the gpt-mini size in PointGoal1,
it can be observed that as the model size increases, failures generally decrease.

D COMPLETE EXPERIMENT RESULTS

D.1 RESULTS FOR ALL THE DATASETS

We present the results for a total of 16 datasets in table 6. These results include an additional
experiment on four Circle tasks (PointCircle1, PointCircle2, CarCircle1, CarCircle2) and eight tasks
in bullet-safety-gym environment(BallRun, CarRun, DroneRun, AntRun, BallCircle, CarCircle,
DroneCircle, AntCircle). In PC2, CC1, and CC2 environments, CDT+SAS exhibited the highest
reward among safe agents. CDT+SAS demonstrates lower costs than CDT in all four environments.

Table 6: Complete evaluation results of the baselines and the Decision Transformer with our method
(DT+SAS) and Constrained Decision Transformer with our method (CDT+SAS) in the Safety
Gymnasium environment. The values are averaged across three different cost thresholds, 20 evaluation
episodes, and three random seeds. Gray: Unsafe agents. Bold: Safe agents whose normalized cost is
less than 1. Blue: Agents which has highest reward among safe agents

DT + ours CDT + ours CDT BC-All BC-Safe BCQ-Lag BEAR-Lag CPQ COptiDICE
Task

reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost
PointGoal1 0.66 1.19 0.65 1.27 0.69 1.12 0.65 0.95 0.43 0.54 0.71 0.98 0.74 1.18 0.57 0.35 0.49 1.66
PointGoal2 0.65 1.78 0.52 0.94 0.59 1.34 0.54 1.97 0.29 0.78 0.67 3.18 0.67 3.11 0.4 1.31 0.38 1.92
PointPush1 0.28 0.62 0.26 0.54 0.24 0.48 0.19 0.61 0.13 0.43 0.33 0.86 0.22 0.79 0.2 0.83 0.13 0.83
PointPush2 0.24 0.64 0.20 0.53 0.21 0.65 0.18 0.91 0.11 0.8 0.23 0.99 0.16 0.89 0.11 1.04 0.02 1.18

PointButton1 0.49 1.38 0.51 1.27 0.5 1.68 0.1 10.5 0.06 0.52 0.24 1.73 0.2 1.6 0.69 3.2 0.13 1.4
PointButton2 0.51 1.14 0.41 0.98 0.46 1.57 0.27 2.02 0.16 1.1 0.4 2.66 0.43 2.47 0.58 4.3 0.15 1.51
PointCircle1 0.69 1.81 0.54 0.21 0.59 0.69 0.79 3.98 0.41 0.16 0.54 2.38 0.73 3.28 0.43 0.75 0.86 5.51
PointCircle2 0.42 1.69 0.63 0.47 0.64 1.05 0.66 4.17 0.48 0.99 0.66 2.6 0.63 4.27 0.24 3.58 0.85 8.61

CarGoal1 0.67 0.85 0.65 0.90 0.66 1.21 0.39 0.33 0.24 0.28 0.47 0.78 0.61 1.13 0.79 1.42 0.35 0.54
CarGoal2 0.48 1.15 0.42 0.98 0.48 1.25 0.23 1.05 0.14 0.51 0.3 1.44 0.28 1.01 0.65 3.75 0.25 0.91
CarPush1 0.31 0.51 0.31 0.49 0.31 0.4 0.22 0.36 0.14 0.33 0.23 0.43 0.21 0.54 -0.03 0.95 0.23 0.5
CarPush2 0.22 1.16 0.21 0.75 0.19 1.3 0.14 0.9 0.05 0.45 0.15 1.38 0.1 1.2 0.24 4.25 0.09 1.07

CarButton1 0.17 1.08 0.27 0.98 0.21 1.6 0.03 1.38 0.07 0.85 0.04 1.63 0.18 2.72 0.42 9.66 -0.08 1.68
CarButton2 0.14 0.84 0.30 1.11 0.13 1.58 -0.13 1.24 -0.01 0.63 0.06 2.13 -0.01 2.29 0.37 12.51 -0.07 1.59
CarCircle1 0.41 1.84 0.47 0.52 0.6 1.73 0.72 4.39 0.37 1.38 0.73 5.25 0.76 5.46 0.02 2.29 0.7 5.72
CarCircle2 0.63 1.69 0.56 0.62 0.66 2.53 0.76 6.44 0.54 3.38 0.72 6.58 0.74 6.82 0.44 2.69 0.77 7.99

BallRun 0.99 1.6 0.04 0.29 0.39 1.16 0.6 5.08 0.27 1.46 0.76 3.91 -0.47 5.03 0.22 1.27 0.59 3.52
CarRun 8.12 1.06 0.72 0.39 0.99 0.65 0.97 0.33 0.94 0.22 0.94 0.15 0.68 7.78 0.95 1.79 0.87 0

DroneRun 0.76 1.58 0.33 0.78 0.63 0.79 0.24 2.13 0.28 0.74 0.72 5.54 0.42 2.47 0.33 3.52 0.67 4.15
AntRun 1.08 2.43 0.32 0.14 0.72 0.91 0.72 2.93 0.65 1.09 0.76 5.11 0.15 0.73 0.03 0.02 0.61 0.94

BallCircle 0.81 1.41 0.32 0.38 0.77 1.07 0.74 4.71 0.52 0.65 0.69 2.36 0.86 3.09 0.64 0.76 0.7 2.61
CarCircle 0.85 1.76 0.19 0.22 0.75 0.95 0.58 3.74 0.5 0.84 0.63 1.89 0.74 2.18 0.71 0.33 0.49 3.14

DroneCircle 0.82 1.55 0.51 0.42 0.63 0.98 0.72 3.03 0.56 0.57 0.8 3.07 0.78 3.68 -0.22 1.28 0.26 1.02
AntCircle 0.59 1.18 0.26 0.34 0.54 1.78 0.58 4.9 0.4 0.96 0.58 2.87 0.65 5.48 0 0 0.17 5.04

Table 7: The modified version of Table 2 with standard deviation across 3 cost thresholds, 20
evaluation episodes, and 3 random seeds.

Task
CDT CDT+ours DT DT+ours

reward cost reward cost reward cost reward cost
mean std mean std mean std mean std mean std mean std mean std mean std

PointGoal1 0.69 0.007 1.12 0.037 0.65 0.007 1.27 0.062 0.66 0.02 1.32 0.31 0.66 0.03 1.19 0.15
PointGoal2 0.59 0.017 1.34 0.054 0.52 0.036 0.94 0.158 0.38 0.02 2.63 0.05 0.65 0.09 1.78 0.17
PointPush1 0.24 0.012 0.48 0.023 0.26 0.027 0.54 0.019 0.22 0.06 0.93 0.21 0.28 0.01 0.62 0.10
PointPush2 0.21 1.363 0.65 31.063 0.20 0.038 0.53 0.089 0.20 0.08 0.78 0.45 0.24 0.06 0.64 0.09

PointButton1 0.5 0.006 1.68 0.049 0.51 0.026 1.27 0.044 0.38 0.04 1.19 0.18 0.49 0.05 1.38 0.21
PointButton2 0.46 0.019 1.57 0.047 0.41 0.019 0.98 0.026 0.50 0.06 1.31 0.14 0.51 0.00 1.14 0.13

CarGoal1 0.66 0.008 1.21 0.057 0.65 0.008 0.90 0.035 0.64 0.02 0.98 0.12 0.67 0.03 0.85 0.16
CarGoal2 0.48 0.032 1.25 0.095 0.42 0.032 0.98 0.047 0.51 0.04 1.47 0.32 0.48 0.03 1.15 0.20
CarPush1 0.31 0.018 0.4 0.068 0.31 0.018 0.49 0.097 0.35 0.07 0.68 0.22 0.31 0.01 0.51 0.15
CarPush2 0.19 0.022 1.3 0.081 0.21 0.023 0.75 0.120 0.20 0.03 1.17 0.26 0.22 0.01 1.16 0.26

CarButton1 0.21 0.014 1.6 0.106 0.27 0.081 0.98 0.006 0.24 0.04 1.42 0.04 0.17 0.03 1.08 0.17
CarButton2 0.13 0.031 1.58 0.034 0.30 0.009 1.11 0.025 0.21 0.04 1.05 0.21 0.14 0.03 0.84 0.08

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.2 ADDITIONAL COMPARISON WITH SOTA OFFLINE RL METHODS AND OFFLINE META-RL

We note that our DT+SAS which uses the pretrained DT without cost training data outperforms the
above SOTA offline safe RL methods. Moreover, we provide the comparison with CQL, SAC-n,
and APE-V which is the online (few-shot) adaptation method for the offline RL algorithm in the
table below. We note that our method shows the better improvement compared to the reported value
of SAC-n → APE-V in APE-V paper. However, the target task of offline meta-RL focuses on the
adaptation performance when the goal of the target task changes significantly, which differs critically
from measuring the generalization performance that is the aim of our paper, making it challenging to
conduct additional experiments.

Table 8: Experiment results with CQL algorithm (Kumar et al., 2020) and APE-V algorithm (Ghosh
et al., 2022a) in D4RL (Fu et al., 2021b) datasets.

Task Name CQL DT DT+ours SAC-N APE-V
reward reward failure reward failure improve(%) reward reward improve(%)

hopper-medium-expert 96.9 111.8 0.1 110.4 0.05 -1.25 110 105.7 -3.91
hopper-medium-replay 86.3 94.3 0 97.3 0 3.18 101.8 98.5 -3.24

walker2d-medium-expert 109.1 108.3 0 107.5 0 -0.74 116 110 -5.17
walker2d-medium-replay 76.8 43.9 1 69.1 0.6 57.4 78.7 82.9 5.34

E PROOF

We first provide technical results in the main paper. We consider MDP as a graphical model, then
we can augment the graphical model with an optimality variable Ot, which denotes 1 [(st,at) ∈ Ct]

where Ct = {(st,at)|(st,at) ∼
∑

zt,zt−1
πlow
ϕ (at|st, zt)πhigh

θ∗ (zt|st−1, zt−1)}, the set of all possible
state-action pairs with θ∗. In MDP, we can get high rewarded states in some transitions and hope to
allocate high weight for high-rewarded trajectories and low weight for suboptimal trajectories. To
denote this high rewarded time-step, we use the above optimality variable Ot.

By defining the condition probability of prompt p1:L given high-level policy πhigh
θ , we leverage rL(θ)

to make sure that the well-designed prompt is selected when it is from underlying the safe high-level
policy πhigh

θ∗ . In details, the length variable L can be composed of two conditions, the length of prompt
and the number of prompt. We conduct the ablation study for this condition in fig. 4. We note that
we can have high probability of p(Ot = 1|zt) = exp(r(πhigh

θ)) when we provide the most matching
prompt p∗ with the underlying πhigh

θ∗ .

E.1 PROOF OF EQ. (13)

To show the derivation, we start from Equation 1,

p(τ |p1:L, s
test
1) =

∫
θ

p(τ |p1:L, s
test
1 , θ)p(θ)dθ.

To check the optimality between the generated trajectory and the prompt, we prove the following
equation.

p(Otraj|p1:L, s
test
1) =

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1)

∏
t=1

p(Ot|stest
t ,atest

t)

)
eL·rL(θ)p(θ)dθ,

where ∑
ztest
1 ∈Z

∏
t=1

p(stest
t+1|stest

t ,atest
t) p(atest

t |stest
t , ztest

t)︸ ︷︷ ︸
πlow
ϕ

pθ(z
test
t |stest

t , ztest
t−1)︸ ︷︷ ︸

πhigh
θ

=:
∑

ztest
1 ∈Z

gπθ
(τ, ztest

1)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

By the Bayes’ rule and the law of total probability, we have

p(Otraj|p1:L, s
test
1) =

∫
θ

p(τ |p1:L, s
test
1 , θ)p(θ|p1:L, s

test
t)dθ

∝
∫
θ

p(τ |p1:L, s
test
1 , θ)p(p1:L, s

test
t |θ)p(θ)dθ

=

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1)

∏
t=1

p(Ot|stest
t ,atest

t)

)
p(p1:L, s

test
t |θ)

p(p1:L, s
test
t |θ∗)

p(θ)dθ

=

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1)

∏
t=1

p(Ot|stest
t ,atest

t)

)
p(O1:L, s

test
t |θ)

p(O1:L, s
test
t |θ∗)

p(θ)dθ

=

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1)

∏
t=1

p(Ot|stest
t ,atest

t)

)
exp (L · rL(θ))p(θ)dθ.

By the definition of rL(θ), we can show that under distinguishability for all πhigh
θ ̸= πhigh

θ∗ , then
rL(θ)converges to a negative constant, and by letting L → ∞ we have exp(rL(π

high
θ)) = 0 for all

πhigh
θ ̸= πhigh

θ∗ and exp(r(πhigh
θ)) = 1 for πhigh

θ = πhigh
θ∗ . The more detailed derivation of distinguisha-

bility is described in (Xie et al., 2021). In addition, we can note that the probability graphical model
has the term p(zt|st, zt−1), which samples the latent skill variable when st is given. By the definition
of high-level policy, we now can call the transformer with latent variables is intrinsically hierarchical
RL with high-level policy πhigh

θ = p(zt|st, zt−1).

As we can explain our transformer as implicit Bayesian inference of in-context learning (Xie et al.,
2021), we now have that the safe high-level policy when we successfully sample a trajectory instruc-
tion in algorithm 1 to satisfy Lyapunov conditions perfectly in every time step. Then, the in-context
learner RL model can also predict action at the given test-time initial state with Lyapunov stable
policy.

E.2 PROOF OF THEOREM 4.1

Since Ut and Vt are both optimality variable to indicate their Lyapunov condition, we apply the
probability inferecne for RL as follows:

log p(U1:T ,V1:T |τ) = log

(
p(s1)

∏
t=1

p(Ut,Vt|st,at)p(st+1|st,at)p(at|st, zt)p(zt|st, zt−1)

)

= log

(∏
t=1

p(Ut,Vt|st,at)

)
+ log

(∏
t=1

p(s1)p(st+1|st,at)p(at|st, zt)p(zt|st, zt−1)

)

=
∑
t=1

log (p(Ut,Vt|st,at)) + log

(∏
t=1

p(s1)p(st+1|st,at)p(at|st, zt)p(zt|st, zt−1)

)
=
∑
t=1

log (p(Ut,Vt|st,at)) + C.

When all Ut,Vt are 1, then we know that the trajectory gurantess the Lyapunov condition perfectly.
Recall that the trajectory is asymptotically stable if the following conditions are satisfied as described
in Definition 3.1.

(1) G(se,ae) = 0, (2) G(st,at) > 0, ∀(st,at) ̸= (se,ae), (3) G(st,at) ≥ G(st+1,at+1).

Since we design our Lyapunov function GSAS as

GSAS(st,at) = min
π

max
t′

E(st′ , π(st′))− E(st,at),

the equilibrium point is defined as GSAS(se, ae) = minπ maxt′ E(se, ae) − E(se, ae) = Êj −
E(se, ae) = 0. Then, the condition Ut = 1 corresponds to the condition (2): G(st, at) >
0,∀(st,at) ̸= (se,ae), and the condition Vt = 1 corresponds to G(st,at) ≥ G(st+1,at+1).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

If we choose the distributions of Ut,Vt as

p(Ut = 1|st, at) ∝ exp (1 [GSAS(st, at) > 0]) ,

p(Vt = 1|st, at) ∝ exp (1 [GSAS(st, at)−GSAS(st+1, at+1) ≥ 0]) ,

then, we can rewrite the above equation as∑
t=1

log p(Ut,Vt|st,at) =
∑
t=1

log p(Vt|st,at,Ut)p(Ut|st,at)

∝
∑
t=1

1 [GSAS(st, at) > 0] +
∑
t=1

1 [GSAS(st, at)−GSAS(st+1, at+1) ≥ 0]

Then, the maximizing the above equation implies that the trajectory get close to the Lyapunov
condition.

E.3 PROOF OF EQ. (10)

The goal of our method is to keep occupancy measures in the distribution of the target control-
invariant setR = {(st, at)|c1 ≤ E(st, at) ≤ c2} where E(st, at) = − log ρ(st, at) for utilizing the
pretrained expert distribution. As our Lyapunov function approximation is defined as

G(st, at) = min
i=1,··· ,N

max
j=1,···T

E(sj , πi(sj))− E(st, at)

for N sample trajectories with the episode length T in the first loop of Algorithm 1. Suppose that c2
is some constant that is larger than min

i=1,··· ,N
max

j=1,···T
E(sj , πi(sj)) for any N,T . We now demonstrate

that Algorithm 1 reduces the probability of escaping from the control invariant set as the numbers of
iterations, N and M for the first and second loops, respectively, increase.
Assumption E.1. The difference ∥G(st, at) − G(st+1, at+1)∥ in Eq. (3) over the transition T is
bounded as ∥G(st, at)−G(st+1, at+1)∥ ≤ L for all t.

Proof. First note that P [τ ̸⊂ R] is less than the sum of the probability of E(st, at) ≥ c2 for all data
points in N trajectories and the probability that all M trials moves below E(st, at) ≤ c1. By using
Markov’s inequality for the first term of RHS and Hoeffding’s inequality for the second term of RHS.
Then, we have

P [τbest ̸⊂ R] ≤ (P [E(s, a) ≥ c2])
NT

+

(
P

[
T∑

t=1

1(Vt ̸= 1) ≥ κ(c2 − c1)

L

])M

≤
[E(s,a)∼D[E(s, a)]

c2

]NT

+ exp

(
−2Mκ2(c2 − c1)

2

TL2

)
for some constant κ to describe the average distance to escape.

20

	Introduction
	Related Work
	Preliminaries
	Modeling Offline Safe RL as Density-based Lyapunov Control
	Density-based Lyapunov Control as Probabilistic Inference

	Self-Alignment for safe RL with Lyapunov condition
	Model-based RL with transformer as Probabilistic Inference
	Instruction Prompt Generation for Safety

	Experiments
	Conclusion
	Model Architecture
	Experiment Setting and Hyperparameters
	Experiment setting
	Normalized Score
	Dataset Details
	Hyperparameters for the Experiments

	Ablation Studies
	Number of trajectories sampled for imagination
	Time step length to calculate E
	Time step length of trajectory in prompt
	Number of prompts
	Model size of Decision Transformer

	Complete Experiment Results
	Results for all the datasets
	Additional comparison with SOTA offline RL methods and offline meta-RL

	Proof
	Proof of eq:incontextpredictor
	Proof of thm:lyapunovgm
	Proof of eq:hoeffding

